skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dinh, Thao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 6, 2026
  2. Abstract Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically considered but not probed experimentally. Here, we report the observation of a nonlinear optical diode effect (NODE) in the magnetic Weyl semimetal CeAlSi, where the magnetization introduces a pronounced directionality in the nonlinear optical second-harmonic generation (SHG). We demonstrate a six-fold change of the measured SHG intensity between opposite propagation directions over a bandwidth exceeding 250 meV. Supported by density-functional theory, we establish the linearly dispersive bands emerging from Weyl nodes as the origin of this broadband effect. We further demonstrate current-induced magnetization switching and thus electrical control of the NODE. Our results advance ongoing research to identify novel nonlinear optical/transport phenomena in magnetic topological materials and further opens new pathways for the unidirectional manipulation of light. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Free, publicly-accessible full text available May 1, 2026
  4. Quantum geometry in condensed-matter physics has two components: the real part quantum metric and the imaginary part Berry curvature. Whereas the effects of Berry curvature have been observed through phenomena such as the quantum Hall effect in two-dimensional electron gases and the anomalous Hall effect (AHE) in ferromagnets, the quantum metric has rarely been explored. Here, we report a nonlinear Hall effect induced by the quantum metric dipole by interfacing even-layered MnBi2Te4with black phosphorus. The quantum metric nonlinear Hall effect switches direction upon reversing the antiferromagnetic (AFM) spins and exhibits distinct scaling that is independent of the scattering time. Our results open the door to discovering quantum metric responses predicted theoretically and pave the way for applications that bridge nonlinear electronics with AFM spintronics. 
    more » « less
  5. null (Ed.)
  6. Abstract Since the initial discovery of 2D van der Waals (vdW) materials, significant effort has been made to incorporate the three properties of magnetism, band structure topology, and strong electron correlations—to leverage emergent quantum phenomena and expand their potential applications. However, the discovery of a single vdW material that intrinsically hosts all three ingredients has remained an outstanding challenge. Here, the discovery of a Kondo‐interacting topological antiferromagnet is reported in the vdW 5felectron system UOTe. It has a high antiferromagnetic (AFM) transition temperature of 150 K, with a unique AFM configuration that breaks the combined parity and time reversal (PT) symmetry in an even number of layers while maintaining zero net magnetic moment. This angle‐resolved photoemission spectroscopy (ARPES) measurements reveal Dirac bands near the Fermi level, which combined with the theoretical calculations demonstrate UOTe as an AFM Dirac semimetal. Within the AFM order, the presence of the Kondo interaction is observed, as evidenced by the emergence of a 5fflat band near the Fermi level below 100 K and hybridization between the Kondo band and the Dirac band. The density functional theory calculations in its bilayer form predict UOTe as a rare example of a fully‐compensated AFM Chern insulator. 
    more » « less